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symmetries) are constructed. For systems with known hierarchies of non-Hamiltonian 
mastersymmetries, hierarchies of Hamiltonian maslersymmetries arc constructed and for 
syslems with known Hamiltonian mastersymmelrier, a hierarchy of non-Hamiltonian 
mastersymmetries are constructed. Moreover, with the help of the action/angle variables, 
the N-soliton perturbation theory, on the soliion submanifold (adiabatic approximation), 
is formulated. An explicit farm o f t h e  time evolution of asymptotic data under the influence 
of perturbation is presented. 

Introduction 

In the previous paper [I], hereafter denoted as I,  we presented the construction of 
actionlangle variables for multisoliton systems. It turns out that the action and angle 
variables on an N-soliton manifoid can be  obtained directly via partial derivatives 
(with respect io the asymptotic data) of a fundamental scalar field. Moreover, the 
suitable actionlangle vector fields are expressible by the same partial derivatives of a 
field variable and  are in close connection with eigenstates of a recursion operator. 

I n  the present paper we consider other subalgebras of soliton symmetries. It is well 
known from the literature that for soliton systems two kinds of algebra of symmetries 
exisi. T i e  first aigebra is connecied wiih ihe systems For which there exists the so-caiied 
recursion operator in an explicit form (the Korteweg-de Vries equation for example). 
Such an algebra (called hereditary algebra 121) consists of time-independent Hamil- 
tonian symmetries and linear-in-time non-Hamiltonian symmetries (represented by the 
so-called non-Hamiltonian mastersymmetries [3]). The second algebra is connected 
with the systems for which there are no recursion operators in the explicit form (the 
u ~ ~ l J ~ ~ ~ ~ l ~ ~ - v ~ ~ v  GqUnrlvrr cAyL~81p~cI .  c)uLII an  algcbis (ca!!ed non-canonical 
action/angle algebra [4]) consists again of time-independent Hamiltonian symmetries 
and  linear-in-time Hamiltonian symmetries (represented by the so-called Hamiltonian 
mastersymmetries [SI). 

So, a question arises of whether it is possible to construct a hierarchy of Hamiltonian 
mastersymmetries for the systems with known hereditary algebra and a hierarchy of 

action/angle algebra. The affirmative answer (on the soliton manifold at least) is 
presented in section 3, where the explicit construction of missing matersymmetries is 
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given. In section 4, we construct the multisoliton perturbation theory, in a purely 
algebraic way, on the basis of non-canonical actionlangle scalar fields. As we confine 
ourselves to the soliton manifold only, the perturbation theory is given in  the so-called 
adiabatic approximation. We finish this paper with a few examples illustrating the 
results. 

1. Basic facts 

We consider evolution equations 

= K , ( u )  (1.1) 

on a suitable manifold M. We are interested in equations for which there exists a 
hierarchy of vector fields K,(u) (symmetries), a scaling vector field S ( u )  and the 
Poisson (implectic) operator Bo so that K.(u) and S ( u )  are Hamiltonian vector fields 
with respect to B o :  

K , ( u )  = Bo grad H,,(u) S ( u )  = Bo grad F (  U )  (1.2) 
where H.(u) and F ( u )  are suitable scalar fields on the manifold under consideration, 
and they fulfil the following commutation relations in the Lie algebra of vector fields: 

L K , , K ~ = [ K ,  K,1=0 LsK, = [S, K,] = ( m  + a ) K ,  a = const. (1.3) 

In this paper we confine our considerations to the N-soliton submanifold M ,  of M 
and to such systems (1.1)-(1.3) whose N-soliton solutions decompose asymptotically 
for f + CC into the one-soliton form 

N 

U N =  1 s,(x+c,f+q,). (1.4) 

If the speeds c, and the phases q, are considered as variables then the set of these 
solutions forms a 2N-dimensional invariant submanifold M ,  of M. 

For the submanifold M ,  we may provide a new parametrization in the following 
way. We define a map Il which assigns to each u,(x, t )  the set of asymptotic data 
ti = ( q , ,  . , . , qN, c , ,  . . . , c,)~. It can be observed that although we refer to the 
asymptotic form of the N-solitons, this new parametrization is defined for arbitrary time. 

Lemma 1. The quantities q, ,  c, are scalar fields on the submanifold M N  with the 
following time dependence: 

, = I  

(1.5) 
a a 

ar  ar 
-cCi( f )=O.  - q , ( r )  = cj 

The proof is given in I 

Lemma 1 shows that the flow (1.1) is linearized in our new coordinates. For convenience, 
we shall call the manifold M N  parametrized in (x. f )  coordinates the physical space 
(nonlinear space), and the same manifold endowed with the coordinates (q , ,  c , )  the 
linear space. 

Now the general procedure to recover the algebraic structure of dynamical system 
(1.1) on M N  is very simple in principle: first find the structure of the linear system 
( l S ) ,  then carry over the whole structure to the system represented in physical 
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coordinates. Although we don't know the explicit form of our variable transformation 
II, we know how tensor fields behave under a change of coordinates. Actually Il 
induces the pushforward 

II': T,M,+ (1.6) 

which maps vector fields of the nonlinear space onto vector fields on the linear space, 
and is a Lie algebra isomorphism, and the pullback 

n+ = (n')*: T2R" + T : M ,  (1.7) 

which is the transpose of Il' wRr the duality between the tangent and the cotangent 
bundle and maps covector fields of the linear space onto covector fields on the nonlinear 
space. 

2. Structure of a linear system 

In this section we restrict our considerations to the linear system (1.5) and examine 
its algebraic structure. First, one should observe that the system (1.5) may be given in  
Hamiltonian form. Let us recall that an equation is Hamiltonian if the flow is of the 
form 0 grad H, where 0 is an impletic (Poisson) operator. Every Poisson operator B 
defines a natural Poisson bracket of scalar fields f and g in the following way: 

(1; =(grad g, 8 gradf) .  (2.1) 

Equation (1.5) admits many different Hamiltonian formulations. For every p # 2 

holds. Here A,, denotes the diagonal N x N matrix 

A, = (2.3) 

To make the following compatible with formulae (1.2) and (1.3) we choose the Poisson 
operator given by 

where a is the normalization factor introduced in (1.3). 

collect them in the following way: 
Some useful results concerning the linear system (1.5) were obtained in I .  Here we 
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Lemma 2. 
( i )  The operator 

is the hereditary recursion operator which maps symmetries of equation (1.5) again 
onto symmetries [ 6 ] .  

A, and Bi of & WRT ci are given by partial derivatives of the 'field variable' P = 
( q l , ,  , , , q", e , ,  . , , , c N j r  WRT the coordinates 

( i i )  The eigenva!.es of & 2 I C  ci , . . . , c,.<, each ofthem occur9 !Wice: The eigenvec!ors 

- J P  - J P  
' Jqi ' Jci  

A =- B.=- &A,(B;) = c$i;(B;)  

Ai 

i, j = 1 , .  . . , N the following relations: 

PO& the tangent space T,@" is ;he span of the &genvzc;ois of 6, 
(iii) WRT the Poisson bracket given by 6, the coordinates cr, 9; fulfil for all 

{ e ; ,  ~ , I s , = o %  { c f ,  z(, = Iq;, qjI@,,= 0. (2.7) 

Hence ( ( l / a ) c p ,  qi) are the canonical coordinates corresponding to  &.They are called 
canonical action/angle variables. 

(iv) For every i =  1,. . . , N, canonical action/angle vector fields are of the form 

- ar7 - 
cJ'"_~;=n-= ~ ~ m a d f - q , ) .  (2.86) 

(v) The symmetries E,,: & " ( e , , .  .'., cN,  0 ,___ ,  O)T are Hamiltonian vector fields 

Jc, -''-.--' 

with respect to the &, 

and commute in pairs, 

[ K , ,  K , ] = 0  (2.10) 

They are also Hamiltonian vector fields with respect to the higher-order Poisson 
operators 8, = &'Go, 

(vi) The Hamiltonian vector field 
- 
S = ( -  a q , , . . . , - a q N , c , , . . , , c N ) '  

(2.11) 

(2.12) 

Observe that the angle vector fields (2 .8h)  as well as the scaling one are Hamiltonian 
vector fields only WRT 8,. 
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Now, for the sake of further considerations, including the recovery of full structure 
in the Lie algebra of the vector fields for the nonlinear soliton systems, let us define 
the fundamental algebra a consisting of the following vector fields on the linear space: 

(2.13a) 

(2.13b) 

Generally, the fundamental algebra (2 .13)  has a very rich structure and contains a lot 
of information on corresponding soliton systems. More details will be presented in a 
separate paper. Here we confine ourselves to two important subalgebras of 2 which 
are very useful when applied to soliton theory. 

Let us introduce three hierarchies of vector fields: _ _  - - 
= Po," = 4°K" 7. = MO,, - up,,. = #".fo 

(2.14) 

Notice that I?, are simple symmetries (2 .9 )  of our linear system and io = %= S is a 
scaling vector field (2.11). 

S," = MO," - ( n  + a - p ) P , , , .  
- 

By straightforward calculations w e  now obtain the following results: 

Lemma 3. 
( i )  Vector fields K, and in fulfil the commutator relations 

[ E , ,  K J = O  [ ~ ~ , K l = ( m + a ) K . + ,  [ i,, ?,,,I = ( m  - n)?,,,,. (2.15) 

(ii) Vector fields 17, and s,P fulfil the commutator relations 

[ K,, R,] = 0 
[ S : ,  S:] = ( m  - n)S:+, . 

[g:, R , ] = ( n + m + a - p ) I ? , + ,  
(2.16) 

Applying the above commutator relations and the definition of mastersymmetries 
[3, 51  we find that vector fields in and 9: are mastersymmetries of degree one for the 
linear system (1.5). 7" mastersymmetries are non-Hamiltonian vector fields and we call 
the set (I?", 7,) the hereditary algebra (or the weak action/angle algebra). In contrast, 
the symmetries R, and mastersymmetries 3," are Hamiltonian vector fields with respect 
to the Poisson operator e,: 

K, = 8, grad S," = 0, grad Tn-p (2.17a) 
- -  - 

where 
N - 

H,, =- 1 cy'" F" = - 1 q ; C : + " .  (2.176) 
I N  

n + u  ,_, !=I 
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Hence, for convenience, we call scalar fields H ,  and r. the non-canonical actionlangle 
variables, and the set (Em, 9;) the non-canonical pth actionlangle algebra. 

3. Algebraic structure on the physical space 

In the previous section we found the algebraic structure of the linear system (1.5). But 
of course, we would like to carry over the structure on the physical N-soliton manifold 
ally C h p l G i J D  a,, U G J I I S U  q u a r r r r r r r r >  111 LGLIIIJ U I  L l l r  l L C L "  Y ' l l l a u I s  UN," ,  ,,. r'l,rr*r,y In,S 

was done in 1 whose main results are collected in theorem 1: 

Theorem 1. 

space. 

..--I ~ ------ "11 >--:--A -.."- .:*:&n- :- 1 ..Fah- G a l >  : - h L  .. i.. .\ "--:-IS .*. 

(i) 4 = (II')-'&II': T,MN + T.MN is a hereditary recursion operator on the physical 

(ii) The einenvectors 

of 4 ( u N )  are Hamiltonian vector fields WRT the Poisson operator Bo= OI,,, determined 
by 

S(u)  = O(u)grad F(u). (3.2) 
O ( u )  is the Poisson operator from the whole manifold M and elred is its reduction to 
MN. Moreover elred = 8, is related to go by 

O , ( U , )  = (n')-'e,(n+)-'. (3.3) 
(iii) The potentials E: and Cl, of the eigenvectors A, and c:-"B,  are given by the 

partial derivatives 

(3.4) 

(iv) ( l l a ) € 9  and ni are canonical coordinates WRT O n ,  i.e. for al i, j =  I , .  . . , N 
the following holds: 

{ E ? ,  Eqh, ,=In , ,~ j l ,=o  (€9, n,;]&= a&,. (3.5) 

In this section we develop the idea of the so-called soliton fundamental algebra of 
vector fields. It allows us to recover in a common way the hierarchies of symmetries 
and mastersymmetries known for soliton systems. Furthermore, it  enables us to con- 
struct the hierarchy of Hamiltonian mastersymmetries for the systems with a recursion 
operator and the hierarchy of non-Hamiltonian mastersymmetries for the soliton 
systems without a recursion operator in explicit form (in the non-extended sense). 

Via the inverse of the pushforward n' we define the soliton fundamental algebra 
.d as the image of d under (II')-': 

sp = (n')-ld. 
TL-.. .L. L-.:- L .L. r--- 
''ICI1 LnC ua>,r " C i l U l  IICIU5 ,,aYC LOC , " l l l l  

n 
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Since the pushforward is a Lie algebra isomorphism the commutator relations (2.13b) 
of a are also valid for d. The same holds for all subalgebras. 

Hence, we found the representation of commuting symmetries K , ( u N ) ,  non-Hamil- 
tonian mastersymmetries 7 - ( u N )  = M O , " ( u N )  - a P , , n ( u N )  and the Hamiltonian master- 
symmetries s:(~,)  = M ~ , " ( u N ) - ( ~  - p + a ) P , , , ( u , ) .  

It means that, at least on the N-soliton manifold M,,  each dynamical system 
(1.1)-(1.3) contains hereditary algebra (2.15) as well as non-canonical action/angle 
algebra (2.16). This statement is one of the important results of our paper. Since the 
non-canonical actionlangle algebra is a new object for a hierarchy which admits a 
recursion operator in explicit form, we give a full structure of the algebra in the 
following lemma. 

Lemma 4. On the N-soliton manifold the Hamiltonian vector fields 

K . ( u N )  = 0, grad Hn-p S : ( u N )  = a, grad T.-r 

have the following representation: 
N N 

K n ( u N ) =  1 4"Aj= c7Aj 
i = l  i = ,  

(3.7) 

(3.80) 

(3.86) 

The corresponding scalar fields are given by 

Proof: Since the formulae for the vector fields are obvious by construction we only 
prove the representation of the scalar fields: 

(3.10a) 

1 1 
T, , (uN)  =-  LIT,  = --(grad F, So,) 

n n 

I N  N 

= - c:+'(grad F, Bj) = - 1 c;+"ll,, (3.10b) 
a i= I 

At the end of this section we again turn our attention to the scalar fields on M N .  
By construction we know that the Poisson manifold P8, of scalar fields over the physical 
space and the corresponding one Ps,, of linear space are isomorphic. However, we are 
now abie to give this isomorphism expiicitiy. -We define a map P :  P,h,+ Pi,) ,  which 
simply assigns to every scalar field 

+_ 
/ ( U N ) = ( _ ,  . . . d x ~ P ( j , ,  (3.11) 
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the evaluation of the integral on M,. For all our examples of section 5 as well as for 
other ones of I we find the following relations: 

P(EY)=pc:  p ( n i )  = 0% P ( H , )  - P H ,  P (  T. 1 = 07" (3.12) 
where 0 is some constant depending on the considered equation. Hence, the map P I P  
is the desired Lie algebra isomorphism. This map P was already introduced in  [7] and 
was used to give an interpretation of interacting solitons as field representatives of 
Galilean point particles [4, 81. 

4. Multisolution perturbation theory 

For the dynamical systems ( l . l ) ,  on the basis of the previous considerations, we are 
now able to formulate the multisoliton perturbation theory. It follows from the fact 
that we have at our disposal a complete set of conserved quantities for (1.1) on the 
N-soliton manifold as well as a suitable set of vector fields forming the basis of a 
tangent bundle to N-soliton Row. 

We consider the evolution equation (1.1) with N-soliton solutions admitting 
asymptotic behaviour in the form (1.4). As we proved in 1, (1.1) always possess a 
recursion operator + on M N  in explicit or implicit form with the following eigenstates: 

Provided there is implectic-symplectic factorization of +, i.e. + = BOJ, we find 

AT = JAi = c,0,'A, +*A? = c,AT 
BT = JBBi = c,S,'B, +*BT = c,Bt AT, B* E T: M ,  (4.2) 

where +*=(O,J)*= JB0 is the recursion operator for adjoint symmetries of the 
cotangent bundle Tt M N .  

As the complete set of conserved quantities we choose the non-canonical 
action/angie variables 

The suitable gradients and vector fields are as follows: 

(4.4a) 

(4.46) 

(4.5a) 

N 
S,, = SX = 0,,V T,, = 1 [ C Y '  ' B, -~ ( n  + a )  c:'q;A,]. (4.56) 

!=I 
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Now let us consider the perturbed mth equation from the hierarchy of ( 1 . 1 ) :  

U, = K,(  U ) +  E R ( u )  (4.6) 
where E is the smallness parameter. In our considerations we confine ourselves to 
perturbation on M N ,  so we perform all calculations in the so-called adiabatic approxi- 
mation. What do we mean by this approximation can be explained as follows. It is 
well known that perturbations do not remain a soliton submanifold invariant. It means 
that in general the first-order multisoliton perturbation theory, besides the deformation 
of N-soliton dynamics, includes radiational effects. It is because perturbations mix 
discrete and continuous parts of a spectrum of a Lax operator [ I  11 of a given soliton 
system. The adiabatic approximation neglecting radiational effects is restricted only 
to the soliton's deformation under various perturbations. Although such approximation 
weakens the power of the theory, nevertheless, in the one soliton case, it has been the 
most popular perturbation approach with well-recognized limitations. Here, we extend 
this approximation to the multisoliton case. The time evolution of H, and T, along 
the perturbed Row (4.6) are as follows: 

-LK,, ,+, ,H,=(H., ,H,}, ,+E(VH,,  R ) = & ( V H , ,  R )  (4.7a) d H, 
d t  
_- 

= - ( n + m + a ) H , + , ,  + E(VT, , ,  R ) .  (4.7bj 

From the explicit form (4.3a) of the conserved quantity H,, we find 

Hence, substituting (4.8) and the explicit form (4.4a) of VH, to the equation (4.7a), 
we obtain 

(4.9) 
N tm 

;=I z c : - ' ( p c ; ( e j ) , - e  

Finally, from the arbitrariness of ni we find the time dependence of soliton velocities: 

(4.10) 
tm 

Analogously, from the explicit form (4.3b) of the conserved quantities T,,, we have 
N 

(4.11) 

Substituting (4.1 l) ,  the explicit form (4.46) of V T ,  and the time dependence (4.10) of 
c, to (4.7b), we obtain 

_ =  dT* - p 1 [ (n+a)q .c : - '+ " (c , j ,+c r+" (q , j , ] .  
dr ,=, 

(4.12) 
+'Y 

-P (q , ) ,  +pel" - &C,I' 

N 1 
1 - 1  

and, from the arbitrariness OF n, we have the second hnai iormuia 
+a- 

& 
( q , ) , = c : " - - c ; "  BTR(u,)dx. (4.13) 

P 
representing the time evolution of N-soliton phases, 
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5. Examples 

5.1. The Korfeweg-de Vries equation 

The celebrated Korteweg-de Vries equation (Kdv) [9, 101 is given by 

u,=u , , ,+auu ,=K, (u )  (5.1) 

where U is an element of the Schwartz space of rapidly decreasing functions S ( R ) .  
The hierarchies of commuting symmetries 

3 
K , ( u ) = + " ( u ) K , ( u )  = 

a 

and mastersymmetries 

a 
t- . (U)=+*(u)t- , , (u)  = (D'+-DUD~l+nu)"(~u,+u) 3 3 (5.3) 

fulfil the commutator relations [2] 

[ K , ,  K,1=0 [T,,, K,I=(m+f)K,+, [T", ~ ~ l = ( m - n ) ~ ~ + ~ .  (5.4) 

Here D denotes the differential operator WRT the x variable and D-' its inverse: 

The scaling mastersymmetry is a Hamiltonian vector field WRT the second implectic 
structure 

xudx=B,VF. (5.6) 
3 

The N-soliton solutions decomposing at fa into one-soliton solutions are given by [ 111 

(5.7) 
N 3  

i = l  a 
U N -  1 - c j s e c h ' [ f ~ ( x + c j t + q j ) ]  

where c, are the eigenvalues of the recursion operator 4. Since a = f theorem 1 gives 
the action/angle variables WRT O,,: 

(5 .8a )  

(5.86) 
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The soliton non-canonical actionfangle vector fields and corresponding scalar fields 
are of the form 

N N 

Kn(UN)= $" 1 uq, = 1 cru,, (5.9a) 
j = ,  ; = I  

(5.106) 

Additionally, the soliton non-Hamiltonian mastersymmetries (5.3) are as follows: 

N 
~ " ( U N ) = ' # ' "  1 (C ,U, , - f4#q , ) .  (5.11) 

,=I 

For the Lie algebra isomorphism P we easily calculate with p = 18/a2 

(5.12a) 

(5 .12b)  

One should notice that on MN 

holds, hence Kn(uN) and 7,,(uN) are expressible by uN and its x-derivatives (integrals) 
contrary to S:(uN)  which additionally contain derivatives of field variable uN with 
respect to the asymptotic data. 

Now we may pass to the N-soliton perturbation theory. As 8,,= D ' + $ a ( D u + u D )  
and J = D-' ,  then 

BT = D-' EN (5.146) 

where U'" are the so-called interacting solitons [12, 131. Expressing the ith velocity c, 
by the spectral parameter .'; as c; = 4 x j ,  we find the perturbed N-solution i n  the form 

J ci 



In the particular case when N = 1 and m = 1, we find 

U > = - %  12 2 sech 2 z z = x ( x + q (  1 ) )  a 

x ? = - -  R(u,)sech2zdz 
6 4 x  a E I+- -- 

R(u , ) ( z+f s inh2z) sech2zdx  

(5.15a) 

(5.1 5 b )  

(5 .16a )  

(5.16 b )  

(5 .16~)  

which is the well-known result of one-soliton Kdv perturbation theory 1141. 

5.2. The Benjamin-Ono equation 

Our second example is the Benjamin-Ono (BO) equation [IS,  161 
+m 

U ,  = 4auu, +Xu,< = D grad (fuZnl, +fan') dx (5.17) I_, 
where U E S,,(R) [17] and X stands for the Hilbert transform 

(principal value). (5.18) ( X f ) = L j  +a' -dc f(t) 
57 - - f - x  

Contrary to the K d v  case, for the BO equation, instead of the hereditary algebra (2.19) 
we have the non-canonical action/angle algebra 141 ( K " ,  S:) = ( K , ,  S,) 

[K1: K,-]=O (5.19) 

where the first few vector fields of each kind are as follows: 

[Sn:  K ,  1 = ( n  + m + 1 ) K,,., [ S e :  S.?$] = ( m  - n)S.-+,- 

KO = u., 

K 2 =  ( ~ a 2 u s + 4 a X u u ,  +4auXuu, - & r ) v . .  . 

K ,  = 4auu, i X U ~ . ~  
(5.20a) 

7 .  _Î  s -  , - ki<, + 4au-+ 3 xu., s_, =- s -  " - xu, + U 
1 

4" . .. 
(5 .206)  

S,= 3 x K 2 +  16a2u'+ 16auXuu, -4au,Xu+2OaXeuu, - 2 u , ,  . . . . 

The corresponding scalar fields H , , ( u )  and T,(u) ,  such that K .  = DVH,  and S, = 
DOT,, as are follows: 

(5 .216)  



Multisoliton perturbation theory 447 1 

The scaling vector field is a Hamiltonian vector field WRT Bo= D :  
+m 

S ( u ) = S , ( u ) = D g r a d  fxu2dx=Bograd F(u). (5.22) 

The N-soliton solutions decomposing at  t + +tm into one-soliton solutions are given 
by [17l 

N I  C, 

, = , a  c : ( x + c , t + q , ) ' + ~  
U N =  1 - (5.23) 

where ci are the eigenvalues of a recursion operator q5 which exists in implicit form. 
Since (Y = 1 ,  theorem 1 gives the canonical action/angle variables WRT Bo: 

and suitable Hamiltonian vector fields 

(5.246) 

The soliton non-canonical action/angle vector fields (5.20) and the corresponding 
scalar fields (5.21) expressible by basic vector and scalar fields (5.24) are of the form 

Ks(uN)= z c:u,, &(UN)= z (c:+'u,, -(n+ I)*,C:u,) (5.251) 
N N 

,=, 1=1 

Additionally, on M N  there exist non-Hamiltonian mastersymmetries 

and (Kn(uN), T , , ( u ~ ) )  constitute the hereditary algebra 

[ ( K . ( u , ) ,  &(%)I = 0 

[ T ~ ( ~ N ) .  T,(UN)I =(m-nb,,+,(UN). 

[T.,(uN). K , ( u ~ ) l =  ( m +  ~)K,,+,(UN) 
(5.27) 

For the map P (3.10) we find 

P (  E. )  = pc; p ( n ; )  = P4i P( H., = PH,  P( T, 1 = P7" (5.28) 

where p = ?r/4a2. 
Now let us consider the perturbed mth equation of HO hierarchy: 

U ,  = K,, ( u )  + E R (  U). (5.29) 

According to our general formulae (4.10) and (4.13), the time evolution of N-soliton 
parameters is as follows: 

( D - ' u , )  R (  U N  ) d x  (5.30a) 

( D - ' u , , ) R ( u , )  dx. (5.306) 
4a' +*- 

(q i ) ,=C:"--E 
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In  the particular case of one soliton we find 

(5.3 1 a )  

(5 .316)  

5.3. Other examples of adiabatically perturbed multisolitons 

First let us consider the perturbed modified Korteweg-de Vries ( M K d v )  equation 

U, = U,, + au2ux + ER( U). (5 .32)  

According to the results of I we have J = D - ' ,  a =+, p = 3 / a  and c ( = 4 x f ,  where xi 
is a spectral parameter. We find the adiabatically perturbed N-soliton solution in the 
form u N ( x l ( t ) ,  . . . q N ( t ) )  where 

(5 .33a)  

(5 .33b)  

One can find the explicit form of the N-soliton solution uN in standard text books 
(see for example 1131). In a particular one-soliton case we find for a = 6  

U, = 2x sech(r) 2 = 2 x ( x +  q( r ) )  q(t)=41C2t+qo (5 .34a)  
m 

x ,  = $E sech z R( u s )  dz  (5 .34b)  

z s e c h r R ( u , ) d r  (5 .34c)  

which is the well-known result of the inverse scattering approach in the adiabatic 
one-soliton perturbation [18]. 

Second we consider the Caudrey-Dodd-Gibbon-Sawada-Kotera (CDCSK) 

equation with a perturbation term: 

U, = u,,+jauu,, +$au,u,, +2a2u2u, + cR(u). (5 .35)  

For the above system J = D-'(D2Sfau)D(D2+fau)D-', a =f, p = 2 / a 2  and c, = 
(Zx , ) '  hold, so the time evolution of the N-soliton parameters are of the following form: 

( 5 . 3 6 a )  

(5 .36b)  

In the particularly interesting one-soliton case 

U, = - x' sech' z 2 = x ( x + q ( t ) )  9 ( t ) = ( 2 x ) 4 r + q u  ( 5 . 3 7 0 )  12 
a 
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the formulae (5.36) are confined to the form 
m a 

(sech2 z-$sech4 z ) R ( u . )  dz (5.376) 

m 

s e c h 2 z ( z + ~ s i n h 2 z - $ t a n h z - ~ z s e c h 2 z ) R ( u , ) d z .  (5.37~) 

6. Summary 

Two main results were obtained in this paper. First, for soliton systems (l.1)-(1.4), 
we proved the existence of a recursion operator (although sometimes in an implicit 
form), of the hierarchies of Hamiltonian and non-Hamiltonian mastersymmetries, and 
of a complete set of conservation laws (at least on the soliton submanifold). Moreover, 
we found these new symmetries and conservation laws in an explicit form. Second, 
we constructed the multisoliton perturbation theory in the so-called adiabatic approxi- 
mation and found the explicit formulae of time dependence of multisoliton parameters. 
The results were illustrated by the Kdv, the MKdv,  the BO and the CDGSW equations. 
One should notice that all results were obtained in a purely algebraic way without 
using the inverse scattering method at all. 
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